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MAGNETOHYDRODYNAMIC FLOW O N  A HALF-PLANE 
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Department of Mathematics, Middle East Technical Unioersity, Ankara, Turkey 

SUMMARY 

We investigate the magnetohydrodynamic flow (MHD) on the upper half of a non-conducting plane for the 
case when the flow is driven by the current produced by an electrode placed in the middle of the plane. The 
applied magnetic field is perpendicular to the plane, the flow is laminar, uniform, steady and incompressible. 
An analytical solution has been developed for the velocity field and the induced magnetic field by reducing 
the problem to the solution of a Fredholm’s integral equation of the second kind, which has been solved 
numerically. Infinite integrals occurring in the kernel of the integral equation and in the velocity and 
magnetic field were approximated for large Hartmann numbers by using Bessel functions. As the Hartmann 
number M increases, boundary layers are formed near the non-conducting boundaries and a parabolic 
boundary layer is developed in the interface region. Some graphs are given to show examples of this 
behaviour. 
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FORMULATION OF THE PROBLEM 

We consider the steady flow of an incompressible fluid with uniform prroperties driven by the 
interaction of imposed electric currents and a uniform transverse magnetic field. Imposed 
currents enter the fluid at l= f a ,  through external circuits and move up on the plane. We 
assume that all the physical variables, including pressure, and the boundary conditions are 
functions of < and q only. The pressure gradient is zero. There is only one component of velocity 
and of magnetic field (in the z-direction). The equations describing such flows are the same as 
those of MHD duct flow problems when pressure gradient is taken as zero. Figure 1 shows the 
geometry of the problem. 

A uniform magnetic field of strength H ,  is directed along the axis of q. The wall is electrically 
insulated except for a length 2a, in the middle, where a perfectly conducting electrode is placed so 
that this part is conducting. Thus the partial differential equations describing the flow (in non- 
dimensionalized form) are’, 

VzV+M(aB/ay)=O, (1) 

V 2 B  + M ( a  v/aq) = 0, (2) 
with the boundary conditions 

v=o; q=o, 
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Figure 1. The geometry of the problem 

B = - l ;  q=o, -co<t<--a, ,  ( 3 4  

aB/aq=o; q=o, --a,<t<a,. (34 

In Hunt and Williams’ paper3 the MHD flow between two parallel non-conducting planes was 
investigated for the case when the flow is driven by the current produced by electrodes placed one 
in each plane, the applied magnetic field being perpendicular to the planes. In this study we have 
considered a more general problem by taking one of the planes as partially insulated, partially 
perfectly conducting and assuming the other plane to be at infinity. 

Then 

By taking the Fourier sine transforms of the equations (1) and (2), we get the partial differential 
equations for P and B as 

a 2  v/av2 - a2 P+ M(aB/aq)  == 0, 

a2B/aq2 - a2B + M ( a v / a q )  == 0, 
(8) 

(9) 
and the boundary conditions (3) imply 

P(a, 0) = 0, 



MAGNETOHYDRODYNAMIC FLOW ON A HALF-PLANE 

where 
pa = (M2/4 + aZ)'/Z 

Applying the boundary conditions, the number of unknowns is reduced to one and we get 

P(a, q)= -2A(a)e-"aqsh(Mq/2), (15) 

B(a, q) = 2 A ( ~ ) e - ~ ~ ~ c h ( M q / 2 ) ,  (16) 
where sh(x) and ch(x) are sine and cosine hyperbolic functions respectively. 

Then fram equations (6) and (7) I/ and B are obtained as 

A(~)e -~a~sh(Mq/2 )  sin(ta)da, (17) 

From the mixed boundary conditions (3c, d, e) one can obtain the following dual integral 
equations: 

In view of the antisymmetry about the line 5 =0, we need to consider the solution in the region 
065<00 only. 

SOLUTION OF DUAL INTEGRAL EQUATIONS 

Let the representation for A(a) be 

A(a)=J0(aa,)/2a +H(a).  

Then dual integral equations (19) and (20) are obtained in terms of H(a)  as 

j: H(a)sin(<a)da=O; a,<<<co, 

where J , (x ) ,  J , ( x )  are Bessel functions of the first kind of order zero and one respectively. 
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We choose a representation for the unknown H(a) now as 

H(M)= xf(x)J1(ax)dx. j: 
Since the dual integral equations(22) and (23) can be written as 
integrated with respect to 5 from 0 to <) 1: H(or) sin(5a)da = 0; a, < 5 < co, 

(24) 

(after equation (23) has been 

the first integral equation (25) is automatically satisfied by this representation (equation (24)) of 
H ( a )  by virtue of the identity 

x H(t--x) 
J ,  (s t )  sin(sx) ds = - ____ t (t2-x2)1/2 ’ 

and, with the help of the identity4 

the second integral equation (26) is reduced to an Abel’s integral equation by substituting H(a) 
from equation (24): 

where 

+ ji’ xf(x) j, 5: J,(ax)[l -cos(ta)]dadx. 
a 

The solution of Abel’s integral equation(29) is given by5 

Substitution of h(5)  from (30) with the help of some known identities6 reduces equation(31) to a 
Fredholm’s integral equation of the second kind for f ( t ) :  

where the kernel K ( p ,  t )  and the free term p ( p )  are 
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At this point we notice that the infinite integrals in the kernel and the right-hand-side function 
are slowly convergent and oscillating due to the Bessel functions J o ,  J , .  Both of these integrals are 
almost impossible to compute numerically; therefore we look for methods to convert them into 
more easily computable form. 

With the help of the identities’,* 

1; [($+@i)L:i-a]J,(aa,r)da=- M 2  8 [ I ,  ( - Mqa‘ r )  K O  (7 r )  + I ,  (7 r ) K ,  ( 7 r  ) ] 
and the identity (obtained in Appendix I) 1: ;(p+@2)1’zJ,( .a,p)da 1 M 2  

where 
r2 = p2 + t2  -2pt coso (39) 

and l o ( x ) ,  I , ( x ) ,  K , (x) ,  K , ( x )  are Modified Bessel functions of the first and second kind of order 
zero and one respectively, the Fredholm’s integral equation (32) can be written as 

(40) 

where 

K(p, t )  = a:p 1: cosO[l, (F r ) K ,  (F r )  + I ,  (F r ) K l  (7 r ) ]  d0 (41) 

The kernel and the right-hand side are now much more easily computable than before. 
To solve the Fredholm’s integral equation (40), we replace the integral by a Gaussian-based 

numerical quadrature and a system of algebraic equations is obtained for the unknown function 8 
and therefore f through equation (35). 

By virtue of the equations for H(a)  (equation (24)) and A(a) (equation (21)), the velocity V(5, q) 
and the magnetic field B(<,q)  can be found through equations(l7) and (18) in terms of pO(p). So 
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after changing the order of integrations, we get 

Now the infinite integrals in V and B can also be transformed to finite integrals which are much 
more easily computable. For these integrals we use the identities (obtained in Appendix 11) 

d% 
{ ( M / 2 ) [ ( 5  + x cos%)’ + k 2 ]  ‘ I 2 }  sin(~a)J , (ax)da= 

[(< + x cos%)’ + k 2 ]  ‘ I 2  
J: e-k( FG + u2)”’ 

Thus V(5, v) ,  B(<, q) can be written as 

We note that the singularities of the quantity K ,  { ( M / 2 ) [ ( 5  +a,pcos8)2 + $3 ’/’} lie on the 
conducting part and that this singularity is of the ‘double-layer’ type. 

RESULTS AND DISCUSSION 

To find the value of B on the conducting part ( q = O ,  - a , < ~ < a , ) ,  we substitute A(a) from 
equation (2 1) in equation (1 8) to give 

B(<,  0)  = 5 [ ( H ( a ) +  m) 2a sin(5a)da 
n o  

(49) 
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and, by using the representation of H(a)  (equation (24)) with pf(pa,)=pO(p)+ 1/2al, we get 

Changing the order of integrations and using the identity(27) and the identity 

n/2 if 4>0, 
- 4 2  if 4<0, 

da=  { 
one can obtain 

By writing pa, = Scht, B(5,O) can be put in the form 

and then numerical integration (Gauss-Legendre) was used. The function O [  (t/a,)cht J was first 
interpolated using the points pa, (0 < p < 1, p =(xi + l)/& xi are the Gauss-Legendre abscissae) at 
the points Schtja,. 

When al=O (no conducting portion on the boundary), V(5,q) and B ( t , q )  become, from 
equations (47) and (48), 

(54) n ( t2  + q2)’/2 

Since 

for small t and q at the singularity point (5 ,  q) = (0,O) (the point where the value of B changes from 
- 1 to I), V(5, ‘1) and B(5, F,-) behave as 

(56) 

(57)  

2 
V(5, ?) 2 - - n vsh( 7 )  jot &$ dt, 

2 

which are 

(59) 
B(5,  q) = ch( q) arctan - 5 . 

r 
The Fredholm’s integral equation (40) was discretized and solved with the kernel (41) and the 
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right-hand-side function (42). The finite integrals in the Fredholm’s equation (40) and in the kernel 
(41) were evaluated using the Gauss-Legendre quadrature formula. For Hartmann numbers 
M =  10 and 20, 16 points were enough for the integration; for higher M ,  24 points were used to 
obtain the desired accuracy. 

Once pe(p)=pf (pa, ) -  1/2a, values were obtained, they were substituted back in equations 
(47) and (48) and V((,q), B(<,q)  were computed at discrete points in the region 0<(<1 and 
0 6  u d 1 (since both V and B are antisymmetric with respect to the ?-axis, computations are 
carried out in the quarter-plane 5 20, q 20).  The region O <  5 d 1,OGq Q 1 was divided into 441 
mesh points by taking the step sizes < h  = qh = 0.05, and the velocity V(( ,  q )  and the magnetic field 
I?(<,?) were computed at these mesh points. 

We present the equal-velocity lines for a ,  =0.3 and Hartmann numbers M = 10, 50 and 100 in 
Figures 2, 3 and 4 respectively. One can notice from these figures that although this problem is 
solved for a half-plane, the flow is confined to a relatively small region near the line ( =a, .  In the 
rest of the region the fluid is almost stagnant. Equal-magnetic-field lines (current lines) for the 
same Hartmann numbers are shown in Figures 5, 6 and 7 respectively. As M increases, a 
boundary layer is formed near the q = 0 line for < > a ,  for both velocity and induced magnetic 
field. It can also be seen from these graphs that, except for narrow regions near q = O  and < =0, the 
velocity is almost constant and equal to its minimum value. Near the line ( = O  these lines move 
towards it; however, for large values of q they will start bending away from the < = 0  line, 
confirming that I VI+m as q+co. The behaviour of the current lines is similar to that of the 
equal-velocity lines except for < < a ,  and for small values of q, because in this case the current lines 
are perpendicular to the <-axis owing to the boundary condition aB/aq=O. Also in most parts of 
the region the value of the magnetic field is stationary and equal to its maximum value. Since our 
mesh size is ( h  = 0.05, the lines which are between < = 0.25 and ( = 0.3 = a ,  are obtained from the 

00 0.2 0.4 06 08 10 

Figure 2. Velocity lines for M = lo, a, =0.3 
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Figure 3. Velocity lines for M=50, a ,  =0.3; ---,the parabolic boundary layer 
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Figure 4. Velocity lines for M =  100, a, =0.3; ---, the parabolic boundary layer 
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Figure 5. Magnetic field lines for M = 10, a ,  =0.3 
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Figure 6. Magenetic field lines for M=50, a ,  =0.3; ---, the parabolic boundary layer 
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Figure 7. Magnetic field lines for M = 100, a, =03; ---, the parabolic boundary layer 
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Figure 8. Velocity lines for M = 50, a, =0.1 
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Figure 9. Velocity lines for M=50, al  =0.45; ---,the parabolic boundary layer 
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Figure 10. Magnetic field lines for M = 50, a l  =0.1 
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Figure 11. Magnetic field lines for M=50, a, =0.45; ---,the parabolic boundary layer 
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Figure 13. Magnetic field lines for M=50, a , = @ O  O < y ,  q<O.1 

interpolation in the graphic program and this causes some error for these lines when they are 
close to the (-axis. 

In Figures 8, 9 and 10, 11 equal-velocity lines and current lines are shown respectively for 
M = 5 0  and for al=O.l, 0.45, indicating the development of a stagnant region in front of the 
conducting wall when the conducting length a, is increased. For a, = 0.0 equal-velocity lines and 
current lines are shown in Figures 12 and 13 respectively in a small square region 0<(<01 and 
0 < q < 0.1. Current lines start from the origin, since B(0, q )  = 0 and B(5,O) = 1, 5 > 0, and confirm 
the behaviour indicated in equation (59). 

Finally we notice the development of the parabolic boundary layer near 4 =O. For small values 
of a, and/or A4 this boundary layer interacts with the similar layer originating at t =  -a l .  For 
higher values of a, and M ,  however, the two layers are separated, and the one in the first quadrant 
is indicated in Figures 3,4,6,7,9 and 1 1. It was difficult in this case to give details of rhe region in 
the neighbourhood of the point (al,O). 

This problem is generalized in Sezgin" for MHD flow between parallel plates, where two 
electrodes of length 2a,  are placed in the middle of the plates symmetrically. When a,  =0, this 
problem reduces to the special case of the flow induced by line electrodes at 5 =0, 9 = f 1 set in 
insulating plates at q =  k 1, with a magnetic field applied in the q-direction. This special case has 
been considered by Hunt and Williams3 and our solution for a, = O  coincides with theirs. In their 
paper they examine the asymptotic solution for large M in separate regions and their current lines 
in the core region compare well with our current lines for a, =O. 
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APPENDIX I 

Consider 

( p 2 + X 2 " 1 / 2 e - a ( 8 ' + x * ) 1 ' ' J  (60) 
( x 'dx; 
X 

then we have (Reference 9, p. 47) 

Integrating with respect to y, we get 

QY = 3r2 CIO(BP- ) K O  (BP + 1 + 1, (BP- )K,(Bp + 11 +constant, 
where the constant vanishes at 7-0. Hence 

Taking the second derivative of Q with respect to a, 

Setting a=O ( p -  = p +  =+y), we get 

APPENDIX I1 

Consider the integral 

Since 

J,(z)= - cosBsin(zcos@)dO, : s: 
the integral (65) can be written as 

1 "  
= 2n I. e - k ( u 2 + a 2 ) 1 / 2  1: cos 8 [cos a( 5 - x cos 0) - cos a( 5 + x cos e)] deda 



758 M. SEZGIN 

For the evaluation of the infinite integrals above we make use of the identity6 

dx 
0)’ .+ x2)1/2 = K O W ’  + P’)”’]. cos(ax)  -f?(y2 +x2)112  

By taking the derivative of (67) with respect to B we arrive at 

Now substituting (68) back into (66), we get 

d8 
uk K ,  { u [ ( t  - x  cose)’ + k 2 ] 1 / 2 }  _ _ _  K ,  (u [ ( (  + x cose)’ + k’] l / ’ )  

[(t - cos 8)’ + k21 [ (15 + x cos 8)’ + k’] 1’2 

Therefore 

REFERENCES 

1. L. Dragoq, Magnetojluid Diynamics, Abacus Press, 1975. 
2. J. A. SherclilT, ‘Steady motion of conducting fluids in pipes under transverse magnetic fields’, Proc. Camb. Phil. Soc., 

3. J. C .  R. Hunt and W. E. Williams, ‘Some electrically driven flows in MHD,  J .  Fluid Mech., 31, 705-722 (1968). 
4. M. Abramowitz and I. A. Stegun, Handbook of Mathematical Functions, Dover Publications, New York, 1965. 
5. I. N. Sneddon, Mixed Boundary Value Problems in Potential Theory, North-Holland, Wiley, New York, 1966. 
6. I. S. Gradshteyn and I. M. Ryzhik, Tables of Integrals, Series and Products, Academic Press, New York and London, 

7. G. Eason, B. Noble and I. N. Sneddon, ‘On certain integrals of Lipschitz-Hankel type involving products of Bessel 

8. M. Sezgin, ‘Magnetohydrodynamic flow in an infinite channel’, Int. j .  numer. methodsjuids, 6, 593409 (1986). 
9. F. Oberhettinger, Tables of Bessel Transforms, Springer-Verlag, 1972. 

10. M. Sezgin, ’Some mixed boundary value problems in M H D ,  Ph.D. Thesis, Calgary, 1983. 

49, 136-144 (1953). 

1965. 

functions’, Phil. Trans. Roy .  Soc., Series A ,  247, 529-551 (1955). 




